
Dynamic Tracing

Bryan Cantrill and Mike Shapiro

Solaris Kernel Group

(bmc, mws@eng.sun.com)

and Instrumentation



Dynamic Tracing and Instrumentation Slide 2 of 18

Kernel Debugging Today

• if (no_advanced_debugging) printf(9f)

• ASSERT(i_am_a_debug_kernel != 0);

• In-situ kernel debugger (kadb )

• In-situ firmware debugger (SPARC obp)

• Run-time tracing (trap trace, kmem allocator, lockstat)

• Advanced post-mortem debugger (mdb)



Dynamic Tracing and Instrumentation Slide 3 of 18

Problem

• Post-mortem analysis is an effective technique for
solving problems where the system panics

• Forcing panics is an impractical technique for diagnosing
non-fatal problems in the field

• Forcing panics is an ineffective technique for diagnosing
transient non-fatal errors and performance problems



Dynamic Tracing and Instrumentation Slide 4 of 18

General Observations

• ASSERTs and trap trace are powerful facilities, but you
only get them in a DEBUG kernel at a high cost

• Kmem allocator debugging facilities are powerful, but
require a reboot and cause global performance hit

• Kernel is filled with #ifdef’d tracing/debugging code

• VTRACE facility solves some problems, but has fallen
into disrepair and requires a TRACE kernel

• Lockstat is a dynamic facility and has flexible output, but
is for a single problem domain and is a closed system



Dynamic Tracing and Instrumentation Slide 5 of 18

TNF Observations

• Only a small number of probes exist in the kernel

• Probe overhead precludes use in sensitive code paths

• TNF traces can often only be interpreted with the aid of
other unrelated tools (e.g. iostat, ls -lL /dev/dsk)

• User interface and programming model are poor

TNF_PROBE_3(syscall_end, "syscall thread", /* CSTYLED */,

tnf_long, rval1, rval1,

tnf_long, rval2, rval2,

tnf_long, errno, error);



Dynamic Tracing and Instrumentation Slide 6 of 18

Competition

• IBM has provided extensive general purpose tracing
tools as part of MVS and AIX

• GTF facility provides configurable, system-wide tracing
facility that can be enabled on a production system

• Data can be consumed live or from crash dump

• Data can be consumed by a variety of tools

• Extensive documentation provided



Dynamic Tracing and Instrumentation Slide 7 of 18

State of the Union

• Network storage engineers use TNF, but are blocked or
frustrated by its limitations

• Mainframe-class sites long for something like GTF

• Field is still stuck with resorting to reboots, custom
kernels, or custom patches or drivers for debugging

• Real-time customers lack tools to debug latency bubbles

• Partners (e.g. Fujitsu, Siemens, Motorola) and
developers all want better tracing facilities



Dynamic Tracing and Instrumentation Slide 8 of 18

Principles of OS Tracing

• Must be part of production kernels

• Must support thousands of probes or more

• Must support specialized or constrained probe sites

• Must allow for selectively enabling probes

• Must have near-zero overhead when disabled

• Simple programming APIs for producers and consumers

• Effective documentation and namespace management



Dynamic Tracing and Instrumentation Slide 9 of 18

DTrace Concepts

• Providers — Back-end code that provides trace point
locations and properties to the framework

• Points — Known trace locations that can be enabled or
disabled selectively (implicit or explicit)

• Actions — Primitives that can be associated with
tracepoints (arguments, stack trace, breakpoint, panic)

• Predicates — Conditional statements that can logically
prefix trace points



Dynamic Tracing and Instrumentation Slide 10 of 18

DTrace Architecture

P1
krtld provider

(functions)

P2
explicit points

(TRACE,

ASSERT)

P3
lockstat,
trapstat,

ttrace

DTrace
central

raw disk,
files

DTrace library

dtrace(1)

mdb(1)

3rd parties

Native
types



Dynamic Tracing and Instrumentation Slide 11 of 18

Trace Point Providers

• Essentially all functions can act as trace points

• Need to be able to handle module load and unload

• Specialized providers can publish custom trace points,
including the set of actions that can be performed:

• lockstat can essentially become a DTrace provider
• trapstat (trap table dynamic instrumentation tool)
• ttrace (tlb dynamic instrumentation tool)

• Explicit TRACE() points require compiler support



Dynamic Tracing and Instrumentation Slide 12 of 18

Traditional Trace Point

• D-cache hot but not very flexible:

if (tracing_on)

do_trace(arg, ...);

• D-cache cold but more flexible:

if (this_trace_point_on)

do_trace(arg, ...);

• Neither implementation helping I-cache footprint



Dynamic Tracing and Instrumentation Slide 13 of 18

DTrace Trace Point

• Pragma or macro triggers special compiler support

int x;

char *y;

/* ... */ ! ...

DTRACE(arg, ..., x, y); nop

mov %l0, %o0

nop

mov %l1, %o1

Single no-op identifies
code patch point

Trampoline code out of
hot i-cache path



Dynamic Tracing and Instrumentation Slide 14 of 18

DTrace Central

• Providers publish trace points, default actions, and
supported actions to framework

• Framework requests that provider enable or disable
particular points, tracks actions and predicates

• Exports data through device to library or directly to on-
disk files or raw devices

• Framework also supplies library with information on
location, stability, specificity, and purpose of each point



Dynamic Tracing and Instrumentation Slide 15 of 18

Buffer Management

• Alternate — provider switches buffers, producing data to
one while another is consumed

• Circular — ring buffer wraps around, final contents
exported when tracing is explicitly disabled

• Single — tracing disabled when buffer fills

• Library can be used to select buffer policy



Dynamic Tracing and Instrumentation Slide 16 of 18

Native Types

• Type information is associated with kernel binaries using
compiler-generated debugging stabs

• Type information is also associated with point arguments

• Set of conversion functions provides mapping between
user types (e.g. PID, filename) and kernel types (e.g.
proc_t *, vnode_t *)

• Meaningful predicates can be constructed as long as
necessary mapping functions are available



Dynamic Tracing and Instrumentation Slide 17 of 18

Programming API

• We provide basic tool, C programming API, and possibly
Perl scripting support as well

• Easy to write higher-level tools to control tracing facility

• Easy to integrate into existing tools (e.g. Symon, mdb)

• Easy to integrate into 3rd party tools (BMC, TeamQuest)



Dynamic Tracing and Instrumentation Slide 18 of 18

Long-Term Goals

• truss -k — follow system calls into the kernel and back

• Inject faults into kernel code

• Enable ASSERT() macros in the field

• DEBUG kernels no longer required (really just an
/etc/system file or flag that enables a set of traces)

• Robust catalogs of system behavior that we can use to
guide decisions, product directions


