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Kernel Debugging Today

• if (no_advanced_debugging) printf(9f)

• ASSERT(i_am_a_debug_kernel != 0);

• In-situ kernel debugger (kadb )

• In-situ firmware debugger (SPARC obp)

• Run-time tracing (trap trace, kmem allocator, lockstat)

• Advanced post-mortem debugger (mdb)
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Problem

• Post-mortem analysis is an effective technique for
solving problems where the system panics

• Forcing panics is an impractical technique for diagnosing
non-fatal problems in the field

• Forcing panics is an ineffective technique for diagnosing
transient non-fatal errors and performance problems
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General Observations

• ASSERTs and trap trace are powerful facilities, but you
only get them in a DEBUG kernel at a high cost

• Kmem allocator debugging facilities are powerful, but
require a reboot and cause global performance hit

• Kernel is filled with #ifdef’d tracing/debugging code

• VTRACE facility solves some problems, but has fallen
into disrepair and requires a TRACE kernel

• Lockstat is a dynamic facility and has flexible output, but
is for a single problem domain and is a closed system
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TNF Observations

• Only a small number of probes exist in the kernel

• Probe overhead precludes use in sensitive code paths

• TNF traces can often only be interpreted with the aid of
other unrelated tools (e.g. iostat, ls -lL /dev/dsk)

• User interface and programming model are poor

TNF_PROBE_3(syscall_end, "syscall thread", /* CSTYLED */,

tnf_long, rval1, rval1,

tnf_long, rval2, rval2,

tnf_long, errno, error);
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Competition

• IBM has provided extensive general purpose tracing
tools as part of MVS and AIX

• GTF facility provides configurable, system-wide tracing
facility that can be enabled on a production system

• Data can be consumed live or from crash dump

• Data can be consumed by a variety of tools

• Extensive documentation provided
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State of the Union

• Network storage engineers use TNF, but are blocked or
frustrated by its limitations

• Mainframe-class sites long for something like GTF

• Field is still stuck with resorting to reboots, custom
kernels, or custom patches or drivers for debugging

• Real-time customers lack tools to debug latency bubbles

• Partners (e.g. Fujitsu, Siemens, Motorola) and
developers all want better tracing facilities
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Principles of OS Tracing

• Must be part of production kernels

• Must support thousands of probes or more

• Must support specialized or constrained probe sites

• Must allow for selectively enabling probes

• Must have near-zero overhead when disabled

• Simple programming APIs for producers and consumers

• Effective documentation and namespace management
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DTrace Concepts

• Providers — Back-end code that provides trace point
locations and properties to the framework

• Points — Known trace locations that can be enabled or
disabled selectively (implicit or explicit)

• Actions — Primitives that can be associated with
tracepoints (arguments, stack trace, breakpoint, panic)

• Predicates — Conditional statements that can logically
prefix trace points
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DTrace Architecture
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Trace Point Providers

• Essentially all functions can act as trace points

• Need to be able to handle module load and unload

• Specialized providers can publish custom trace points,
including the set of actions that can be performed:

• lockstat can essentially become a DTrace provider
• trapstat (trap table dynamic instrumentation tool)
• ttrace (tlb dynamic instrumentation tool)

• Explicit TRACE() points require compiler support
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Traditional Trace Point

• D-cache hot but not very flexible:

if (tracing_on)

do_trace(arg, ...);

• D-cache cold but more flexible:

if (this_trace_point_on)

do_trace(arg, ...);

• Neither implementation helping I-cache footprint
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DTrace Trace Point

• Pragma or macro triggers special compiler support

int x;

char *y;

/* ... */ ! ...

DTRACE(arg, ..., x, y); nop

mov %l0, %o0

nop

mov %l1, %o1

Single no-op identifies
code patch point

Trampoline code out of
hot i-cache path
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DTrace Central

• Providers publish trace points, default actions, and
supported actions to framework

• Framework requests that provider enable or disable
particular points, tracks actions and predicates

• Exports data through device to library or directly to on-
disk files or raw devices

• Framework also supplies library with information on
location, stability, specificity, and purpose of each point
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Buffer Management

• Alternate — provider switches buffers, producing data to
one while another is consumed

• Circular — ring buffer wraps around, final contents
exported when tracing is explicitly disabled

• Single — tracing disabled when buffer fills

• Library can be used to select buffer policy
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Native Types

• Type information is associated with kernel binaries using
compiler-generated debugging stabs

• Type information is also associated with point arguments

• Set of conversion functions provides mapping between
user types (e.g. PID, filename) and kernel types (e.g.
proc_t *, vnode_t *)

• Meaningful predicates can be constructed as long as
necessary mapping functions are available
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Programming API

• We provide basic tool, C programming API, and possibly
Perl scripting support as well

• Easy to write higher-level tools to control tracing facility

• Easy to integrate into existing tools (e.g. Symon, mdb)

• Easy to integrate into 3rd party tools (BMC, TeamQuest)
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Long-Term Goals

• truss -k — follow system calls into the kernel and back

• Inject faults into kernel code

• Enable ASSERT() macros in the field

• DEBUG kernels no longer required (really just an
/etc/system file or flag that enables a set of traces)

• Robust catalogs of system behavior that we can use to
guide decisions, product directions


