
DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 1

Bryan Cantrill
(bmc@eng)

DTrace: Dynamic Tracing For Solaris

Solaris RAS/Performance

Mike Shapiro
(mws@eng)

Solaris Kernel Technologies

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 2

Bryan Cantrill
(bc30992@japan)

DTrace: Dynamic Tracing For Solaris

Solaris RAS/Performance

Mike Shapiro
(ms36066@sfbay)

Solaris Kernel Technologies

IT
O

PS APP
R

OVED

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 3

A Modern Tracing Framework

" Must have zero probe effect when disabled
" Must allow for novel tracing technologies

" Must allow for thousands of probes

" Must allow arbitrary numbers of consumers
" Unwanted data must be pruned as early as

possible in the data chain

" Data must be coalesced whenever possible,
and as early as possible

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 4

The DTrace Vision
" Build a tracing framework that provides

concise answers to arbitrary questions
" Enable quantum leap in performance

analysis and engineering

" Improve RAS through continuous tracing

" Accelerate project development
" Eliminate DEBUG and other special kernels:

all facilities available in production

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 5

IBM MVS Tracing

" MVS provided wealth of tracing facilities,
notably GTF and CTRACE

" IPCS console provided commands to enable,
filter, and display GTF, CTRACE trace records

" Extensive probes provided for base
operating system, channel programs

" GTRACE() assembler macro used to record
data in a user program; can later be merged

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 6

GTF Example
" Operator console:

START GTF.EXAMPLE1
AHL103I TRACE OPTIONS SELECTED−−SYSM,USR,DSP
00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U
REPLY 00,U
AHL031I GTF INITIALIZATION COMPLETE

" IPCS GTFTRACE output:

DSP ASCB 00F44680 CPU 001 PSW 070C1000
 TCB 00AF2370 R15 80AF2858
 R0 00000001 R1 FDC9E5D4

 GMT−07/02/89 00:29:08.155169
...

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 7

GTF Example
" Operator console:

START GTF.EXAMPLE1
AHL103I TRACE OPTIONS SELECTED−−SYSM,USR,DSP
00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U
REPLY 00,U
AHL031I GTF INITIALIZATION COMPLETE

DSP ASCB 00F44680 CPU 001 PSW 070C1000
 TCB 00AF2370 R15 80AF2858
 R0 00000001 R1 FDC9E5D4

 GMT−07/02/89 00:29:08.155169
...

address space
control block

processor
status word

task
control block

saved register
values

dispatch
event on CPU1

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 8

VTRACE

" Kernel tracing framework developed early
in Solaris 2 (1991)

" Provided a C macro to designate a probe
site; some probe effect even when disabled

" Additionally, applications could issue fast
trap to record events in in-kernel buffer

" In-kernel buffers could be continuously
read out and streamed to disk

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 9

VTRACE, cont.

" Scalable and lightweight when enabled

" Fair coverage: ≈1,000 trace points

" Used to solve real performance problems
" As a result of disabled probe effect,

required a special kernel
" Fell into disrepair during 64-bit port

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 10

TNF

" Trace Normal Form tracing framework
introduced in Solaris 2.5

" Originally a user-level framework (LSARC
1993/650); kernel support tacked on
(PSARC 1994/165)

" Like VTRACE, provides C macro to
designate a probe site; induces load,
compare and branch even if disabled

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 11

TNF, cont.
" Uses pseudo per-CPU buffering, resulting

in suboptimal CPU scaling

1 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

TNF Performance

CPUs

N
an

os
ec

on
ds

 p
er

 p
ro

be

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 12

TNF, cont.
" Some of TNF’s failings:

� Too few probes (≈30 probes in common kernel code)

� Crude filtering (only based on process ID, and even
then doesn’t work for scheduling events)

� No control over data generated by each probe

� Doesn’t allow for continuous collection of data

� Doesn’t correlate kernel data to application activity

� Bizarre data format designed for use only in
postmortem analysis

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 13

KernInst
" Kernel instrumentation tool developed at

Wisconsin [Tamches, Miller, et al.]
" User-level daemon performs run-time

register analysis of kernel object code

" Code patches, trampoline code, and
instrumentation are inserted using driver

" Overcomplicated by living outside of core OS

" Does not provide sufficient predicate support
" Unsafe probe insertion causes OS failure!

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 14

Linux DProbes

" Dynamic instrumentation kit for Linux kernel
[Moore, IBM LTC, et al.]

" Replaces kernel text with breakpoint trap
that vectors to user RPN probe program

" Also provides access to Intel debug registers

" Currently under active development

" DProbes facility not part of stock kernel
" Significant safety issues (more later ...)

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 15

Competitive Landscape

user/kernel/merged

probe coverage

disabled probe effect

scalability

safety

extensibility

data filtering

arbitrary recording

self describing

run-time analysis

stock availability

stable abstractions

Feature GTF vtrace TNF KInst DProbe Notes

M M M K K users want combined timeline
of user and kernel events

framework must provide sufficient
probes to solve most problems

ideal framework has zero probe
effect when disabled

concurrent probe firings must
scale to arbitrary number of CPUs

no way for user to induce fatal
machine or OS failure

framework should allow easy
addition of probes and providers

users should be able to filter on
arbitrary conditions at probe site

users should be able to record
arbitrary data on probe firing

type information available to
consumers for all recorded data

run-time analysis tools should be
provided, not just post-mortem

tracing facilities must be
available on production systems

framework must provide stable
abstractions for layered tools

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 16

Providers

" Tracing frameworks have historically been
tied to a single tracing methodology

" Conversely, new tracing methodologies
have had to invent their own frameworks

" In DTrace, the tracing framework is
formally separated from tracing providers

" Allows for faster adoption of and provides
significant leverage for novel tracing
methodologies

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 17

Probes

" A trace point in DTrace is called a probe

" A probe is identified by a tuple consisting
of Provider, Module, Function and Name

" Probes may have Module and Function
unspecified (such probes are said to be
unanchored)

" Each probe has a unique 32-bit ID

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 18

Predicates and Actions

" Idea: Provide flexible boolean expressions
that can control tracing activities, e.g.
if (pid == process of interest)
 then trace data of interest

" Must allow completely arbitrary queries to
be formulated by user or layered tool

" Must evaluate at probe firing time to
prune data stream at earliest opportunity

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 19

Provider Interface

" Provider makes available all known probes
" Framework calls into provider to enable a

specific probe
" Framework handles multiplexing of

multiple consumers of a single probe

" Provider indicates that an enabled probe is
hit by calling dtrace_probe (),
specifying probe ID

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 20

dtrace_probe ()

" dtrace_probe () is called to take
appropriate actions (if any) when an
enabled probe is hit

" Can be called from any context in which C
may be called, e.g.:
� From high-level interrupt context

� While interrupts are disabled

� In synchronization primitives (e.g. mutex_enter ())

� While dispatcher locks are held

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 21

dtrace_probe (), cont.

" Disables interrupts for its duration
� Substantially simpler than implementing lock-free

data structures

� Prevents preemption, CPU migration

� As fast as performing an atomic memory operation

� Synchronous cross calls can be used to guarantee
that no threads remain in critical section

" Converts probe ID to internal data structure
for further processing

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 22

dtrace_probe (), cont.

" Iterates over a per-probe chain of enabling
control blocks (ECBs)

" Each ECB corresponds to an enabling of a
probe

" The ECB abstraction allows:
� A given consumer to have multiple, different

enablings of a single probe

� Disjoint consumers to have disjoint enablings of a
single probe

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 23

Enabling Control Blocks

" Each ECB contains:
� An optional predicate

� A list of one or more actions

� A pointer to an array of per-CPU buffers

" Each ECB has a corresponding enabled
probe ID (EPID)

" EPID space is per consumer

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 24

Enabling Control Blocks, cont.

" Actions are taken on an ECB if and only if:
� There does not exist a predicate, or

� The predicate evaluates to a non-zero value

" Actions may identify data to be stored into
a trace record

" Actions need not generate trace data
� May update variable state (more later)

� May affect system state in a defined way (e.g.
breakpoint, panic)

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 25

Trace Records
EPID data EPID

 data EPID data

 data, cont.

EPID data

" Record size is constant
per ECB (and therefore
per EPID)

" Records consist of 32-
bit EPID, followed by
some amount of data

" Library determines
record size and layout
using a separate EPID
dictionary

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 26

Trace Records, cont.

" Library’s EPID dictionary can be built
dynamically: as a new EPID is seen in the
data stream, the library queries for the
corresponding record size and layout

" Separating the data stream from the
metadata stream facilitates run-time
analysis tools

" Lack of data/metadata separation is a
serious deficiency in TNF

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 27

Buffers

" Buffers are per consumer, per CPU
" Buffers are always allocated in pairs: an

active buffer and a spare buffer
" A buffer is consumed by:

� Issuing a synchronous cross call to the corresponding
CPU to switch active buffer with spare buffer

� Copying out used portion of newly spare buffer
(formerly the active buffer) to user-level

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 28

Buffer Management

" If buffer is full when a data-generating
action is taken, a per-buffer drop count is
incremented and no action is taken

" It is up to consumers to minimize drop
counts by reading buffers sufficiently often

" Drop counts are copied out to user-level
alongside buffer data; consumers always
know if data is incomplete

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 29

Buffer Management, cont.

" A consumer may optionally indicate that a
buffer is to be treated as a ring buffer

" Ring buffers wrap on overflow, writing
over older data

" Consumers can avoid data loss by reading
buffer sufficiently often

" Useful primarily to provide “black box”
style event recording

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 30

Function Boundary Tracing

" Would like a probe before every function
entry and after every function return

" Would like to implement probes by hot
patching kernel text only when enabled --
thereby avoiding performance effect when
disabled

" But how to hot patch text?

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 31

Branch Insertion?

" Idea is to patch probe point to be an
annulled branch-always into a jump table

" Must perform static analysis to ascertain
dead registers

" Analysis must somehow statically
determine trap level; failure to do so can
induce RED state exception

" e.g. KernInst

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 32

Software Trap Insertion?

" Idea is to patch desired code to be a trap-
always instruction

" Must perform static analysis to avoid
placing trap-always instruction where trap
level can be non-zero

" Failure to do so can induce RED state
exception

" e.g. Hot Diagnosis

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 33

Branch Insertion, revisited

" If we only patch a function’s initial save
instruction, we solve both of the problems
with branch insertion:
� Trap level is implicitly considered: code at TL > 0

may not arbitrarily issue a save

� Register analysis is obviated by the save:
immediately after the save, locals and outputs are
dead

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 34

Entry Patching
Function

save %sp, −0xc0, %sp
ldx [%i0+ 0x3b0], %l6
...

We patch the save instruction to be an
annulled branch-always into a per-probe
entry in a per-module jump table

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 35

Entry Patching
Function

ba,a . + offset
ldx [%i0+ 0x3b0], %l6
...

Per module FBT table
...
save %sp, −0xc0, %sp
set probe_id , %o0
mov %i0, %o1
...
sethi %hi(pc − 4), %g1
call dtrace_probe
or %g1, %lo(pc − 4), %o7
...

The jump table entry:

� Performs the patched-over save
� Moves the inputs into the outputs
� Sets %o7 to be (patched_pc - 4)
� Calls dtrace_probe ()

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 36

sethi %hi(0x1494800),%g2
sethi %hi(0x140a000),%g1
save %sp, −0xb0, %sp
ldx [%g2 + 0x98], %g3
...

Function

Entry Patching, cont.

" Correctly patching the save instruction in
this case would require static register
analysis: live registers volatile across the
call to dtrace_probe () must be
preserved

" The first instruction
of a non-leaf function
is not always a save
instruction

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 37

Entry Patching, cont.

" We instead patch the first instruction to be
the annulled branch-always

" In this case, the jump table entry:
� Performs a MINFRAME save

� Moves the inputs into the outputs

� Calls dtrace_probe ()

� Performs a restore

� Branches back to (patched_pc + 4) with the
patched-over instruction in the delay slot

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 38

ba,a . + offset
sethi %hi(0x140a000),%g1
save %sp, −0xb0, %sp
ldx [%g2 + 0x98], %g3
...

Function

Entry Patching, cont.
Per module FBT table
...
save %sp, −MINFRAME, %sp
set probe_id , %o0
mov %i0, %o1
...
call dtrace_probe
mov %i4, %o5
restore
ba . + offset
sethi %hi(0x1494800), %g2
...

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 39

...
0x17c: mov 1, %i0
0x180: ret
0x184: restore

Function

Return Patching

" ret/restore couplets can be patched in
much the same way as save instructions

" The ret is patched to be an annulled
branch-always into a jump table entry

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 40

...
0x17c: mov 1, %i0
0x180: ba,a . + offset
0x184: restore

Function

Return Patching, cont.
Per module FBT table
...
set probe_id , %o0
mov 0x180, %o1
call dtrace_probe
mov %i0, %o2
ret
restore
...

The jump table entry:

� Calls dtrace_probe (), passing
both the return value and the
offset of the ret

� On return from dtrace_probe (),
performs the ret/restore couplet

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 41

...
0x17c: stx [%g2], %g3
0x180: call mutex_exit
0x184: restore %g0,%l0,%o0

Function

Return Patching, cont.

" ret/restore couplets are not the only way
to return from a non-leaf routine

" call/restore and jmpl/restore couplets are
used to implement tail-call elimination

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 42

...
0x17c: stx [%g2], %g3
0x180: ba,a . + offset
0x184: restore %g0,%l0,%o0

Function

Return Patching, cont.
Per module FBT table
...
set probe_id , %o0
mov 0x180, %o1
call dtrace_probe
mov %i0, %o2
call mutex_exit
restore %g0,%l0,%o0
...Principle is the same:

� control-transfer instruction is patched to be an
annulled branch-always

� Jump table entry performs control-transfer/restore
couplet upon return from dtrace_probe ()

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 43

...
0x17c: ldx [%g2], %g3
0x180: jmpl %g3,%o7
0x184: restore %g0, %g2,%o0

Function

Return Patching, cont.

" Must preserve operands volatile across the
call to dtrace_probe () (i.e., inputs and
globals)

" Both jmpl and restore
can operate on
register operands

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 44

...
0x17c: ldx [%g2], %g3
0x180: ba,a . + offset
0x184: restore %g0,%g2,%o0

Function

Return Patching, cont.
Per module FBT table
...
mov %g3, %l1
mov %g2, %l2
set probe_id , %o0
mov 0x180, %o1
call dtrace_probe
mov %i0, %o2
jmpl %l1, %o7
restore %g0,%l2,%o0
...

� The volatile registers are
moved into unused locals

� The instructions using the
volatile operands are
restructured to be in terms
of the local

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 45

Choosing Eligible Functions

" Always err on the side of caution: if a
function looks like it’s trying to be clever or
appears otherwise strange, don’t create
probes for it

" Only create probes for functions
containing both a patchable entry and a
patchable return

" (Well, plus resume_from_zombie ())

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 46

dtrace(1M) syntax

dtrace [-i id]

 [-P prov]

 [-m [prov:] mod]

 [-f [[prov:] mod:] func]

 [-n [[[prov:] mod:] func:] name]

demo 1

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 47

Language Design
" The kernel is written in C, so the natural

choice for low-level predicates is C:

curthread−>t_cpu−>cpu_id == 0 &&

curthread−>t_cpu−>cpu_idle_thread ==

curthread ...

" The Kernel Stabs project (PSARC 2001/021)
provided native type info in CTF, so it is
possible to build a dynamic evaluator

" Same language for predicates and actions

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 48

Introducing “D”

" Complete access to native kernel C types
" Complete access to statics and globals

" Complete support for all ANSI-C operators

" Support for strings as a first-class citizen
" Support for built-in variables (timestamp,

curthread, arguments, machine regs, etc.)
" Compiler provided as a library API

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 49

module

symtabCTF

module

symtabCTF

Implementing D

module

symtabCTF

drv/dtrace

DIF engine

DIF

libdtrace.so.1

parser

codegen

assembler

module

symtabCTF

module

symtabCTF

module cache

symtabCTF

lexer

disassembler

svc routines

dtrace(1M)
Clients send D expressions to
library for compilation

Compiler stack produces
D Intermediate Format (DIF)
objects that can be bound
to probe locations

DTrace driver stores DIF in the
kernel and executes program
at probe firing time

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 50

DIF Architecture

" Small RISC architecture ideal for simple
emulation or on-the-fly code generation
� variable number of 64-bit registers (%r0 = 0)

� 64-bit arithmetic and logical instructions

� 1, 2, 4, and 8-byte safe memory loads

� standard branches and condition codes

� instructions to access variables, strings

� ~50 opcodes, ~200 line emulator (plus some
supporting routines for loads, variables, etc.)

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 51

DIF Example

" D expression: “curthread−>t_cpu ”

" DIF code:
ldgs 256, %r1 ! 256 = "curthread"

setx 0x00000000.000000a8, %r2

add %r1, %r2, %r1

ldx [%r1], %r1

ret %r1

" DIF object: DIF

• text section
• string table
• variable table
• return type

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 52

DIF Safety
" All DIF objects are validated by the kernel:

� valid opcodes – valid string refs – reserved bits

� valid registers – valid variables must be zero

" Only forward branches are permitted

" Limit on maximum size of DIF object
" DTrace runtime handles invalid loads,

misaligned loads, and division by zero

" DTrace runtime prevents access to i/o
space addresses using new vmem arena

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 53

DIF Load Safety

" DIF engine load routines check alignment
and i/o space arena before issuing load

" Per-CPU DTrace fault protection flag is set

" If hment search fails and protection is on,
sfmmu sets fault flag and issues done
instead of calling sfmmu_pagefault ()

" Failed load aborts processing of current ECB

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 54

D Strings
" First-class strings provided to avoid

ambiguity of char* and char[] in C

" Quoted strings are assigned string type
" Scalars can be promoted to string type using

new stringof() operator

" Operators <, <=, >, >=, !=, == overloaded as
strcmp(3C); promote char* and char[]:

 curthread−>t_procp−>p_user.u_comm == "ksh"

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 55

D Limitations

" Still need to find some solution for
#defines that are used as flag bits:

 (curthread−>t_proc_flag & TP_PRVSTOP)

" Preprocessor approach possible but messy

" Ideally extend compiler or tools and CTF to
support association directly in C source

" Solution would also benefit other
debugging tools (e.g. mdb(1) ::print)

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 56

Linux DProbes Comparison

" RPN-like IR developed in advance of
forthcoming high-level language

" Safety issues not thoroughly considered:
� user can induce panic if probes are placed improperly

� user can modify registers, memory, write to i/o ports

� validation performed in tool and libraries, not kernel

� infinite loop problem handled by forcing user to
specify jmp_max=123 in probe program

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 57

dtrace(1M) syntax

dtrace [-i id [predact]]
 [-P prov [predact]]
 [-m [prov:] mod [predact]]
 [-f [[prov:] mod:] func [predact]]
 [-n [[[prov:] mod:] func:] name [predact]]

predact ⇒ [/ predicate /] { action }

demo 2

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 58

demo 2dtrace(1M) example

dtrace −n ´write32:entry

 / curthread−>t_procp−>p_user−>u_comm == "ksh" /

 { trace(curthread−>t_procp−>p_pidp−>pid_id) }´

dtrace: ’write32:entry’ matched 1 probe.

CPU ID FUNCTION:NAME

 0 6796 write32:entry 115575

 0 6796 write32:entry 115575

 0 6796 write32:entry 115575

 0 6796 write32:entry 100392

 0 6796 write32:entry 100392

 0 6796 write32:entry 100392

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 59

Variables
" Idea: allow D actions to instantiate,

manipulate, and record variables
" Variables can also be used by predicates to

alter control flow and correlate events
" Variable species:

� scalar variables: integers, strings

� associative arrays: arbitrary (key, value) collections

" Variable scope:
� global per client instance

� thread-local per client instance

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 60

Scalar Variables in D
" Variables instantiated by D assignment

operators: = += −= *= /= %= &= ^= |= <<= >>= ++ −−

" Variable type determined by first assignment

" Variables initially assigned zeroes

" Definitions cached in libdtrace client state

DIF
ID Name Type Scope

1 "foo" int global

2 "bar" str global

3 "baz" int thread

1 "foo" int global
3 "baz" int thread

ldgs 1, %r1
...

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 61

Variable Scope

" Global variables named by plain identifiers
" TLS variables accessed and instantiated by

overloading “curthread−> ”

" D compiler precedence rules:
� C type names defined in kernel (ANSI-C rules)

� DTrace built-in variable names

� Global and static variable names defined in kernel

� User-defined variable names

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 62

Associative Arrays in D

" Arrays named by identifier [expression-list]
" Initially filled with zeroes just like scalars

" Entry can be freed by setting it to zero

" Type signature of key and value determined
by first assignment; enforced thereafter

" Examples:
uids[curthread−>t_procp−>p_cred−>cr_uid]++;

a[curthread, args[0]] = args[1];

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 63

Value Consistency

" Important to provide semantic consistency
for data used in both predicate and actions:
/ foo == 3 / { trace(foo) }

/ dnlc_nentries < 10 / { trace(dnlc_nentries) }

" Kernel data consistency can be achieved by
taking a snapshot prior to ECB processing

" Variables pose greater challenges:
/ dnlc_nentries < 10 / { foo = 0 }

/ foo++ && bar++ / { trace(foo + bar) }

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 64

Variable Consistency

" Variable group must be self-consistent and
consistent w.r.t. other modifying ECBs:
/ dnlc_nentries < 10 / { foo = 0 }

/ foo++ && bar++ / { trace(foo + bar) }

" Consistency is achieved by locking
variables in a defined order (by ID)

" Only need to do this when variables are
used in both predicate and action

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 65

dtrace(1M) syntax

dtrace [-i id [predact]]
 [-P prov [predact]]
 [-m [prov:] mod [predact]]
 [-f [[prov:] mod:] func [predact]]
 [-n [[[prov:] mod:] func:] name [predact]]

predact ⇒ [/ predicate /] { action }

demo 3

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 66

Aggregations

" An aggregating function is a function f(x),
where x is a sequence of arbitrary length,
for which there exists an aggregating
function f'(x) such that:

f'(f(x0), f(x1), ... f(xn)) = f(x0, x1, ... xn)

" E.g., count, mean, maximum, and
minimum are aggregating functions;
median, and mode are not

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 67

Aggregations, cont.

" When data is to be processed using an
aggregating function, the implementation
can be made very efficient:
� Trace records need not be generated; only the

intermediate results from the aggregating function
need to be stored

� Intermediate results from aggregating functions can
be stored per CPU, thereby eliminating data sharing

� Aggregating function can be periodically performed
on all per CPU intermediate results to derive system-
wide result

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 68

Aggregations, cont.

" An aggregation is an associative table
keyed by an n-tuple where each value is
the result of an aggregating function

" n-tuple consists of a list of D expressions
" Aggregating functions are provided by the

framework

" Framework provides a single aggregation
per consumer

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 69

Aggregations, cont.

" Current aggregating functions:
� max(expr): the intermediate result is set to the

greater of the intermediate result and expr

� count: increments the intermediate result

� quantize(expr): the intermediate result consists of
64 power-of-two buckets; the bucket corresponding
to expr is incremented

� avg(expr): the intermediate result consists of a
count and a total; the count is incremented and the
total is increased by expr

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 70

Aggregation Example

" For example, maximum kernel bcopy ()
size by command name:
� Enable probe with function “bcopy ”, name

“entry ”
� Aggregate on:

curthread−>t_procp−>p_user.u_comm

� Set aggregating function to “max(arg2)”

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 71

Aggregation Implementation

" Aggregations are implemented using the
same buffer infrastructure as trace buffers

" Buffer switching and copying thus fall out
" Aggregations are an associative table;

buffering is complicated by the presence of
hash table metadata

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 72

EPID value key EPID

 key value EPID key

 value

EPID key

hash buckets

hash keys

 value

" Data grows from start
of buffer

" Metadata grows from
end of buffer

" Only data is copied out

" EPID is in data record,
but is not considered
to be part of the key

Aggregation Implementation

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 73

Aggregation Implementation

" Library applies aggregating function to
consumed data, using formerly consumed
data as intermediate result

" Allows the kernel to discard the metadata
contents of consumed aggregation buffers

" Allows drops to be easily eliminated in
long-running aggregations

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 74

dtrace(1M) syntax

dtrace [-i id [aggact]]
 [-P prov [aggact]]
 [-m [prov:] mod [aggact]]
 [-f [[prov:] mod:] func [aggact]]
 [-n [[[prov:] mod:] func:] name [aggact]]

aggact ⇒ [/ predicate /]

 "[" expr-list "]" = aggregating-func (arg-list)

demo 4

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 75

DTrace During Boot
" Normally, consumer is a process with

DTrace pseudodevice open
" However, would like to be able to trace

during boot — before processes can run

" Introduce anonymous state:
� Predicates and actions for anonymous state are

specified via driver's configuration file

� Command has option to generate configuration file

� Anonymous state may later be grabbed by a
consuming process

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 76

DTrace During Boot, cont.
" Use of DTrace during boot revealed that

each text page for libc is retrieved from
disk three times! (see 4647351)

" Using probe in page_destroy () with an
appropriate predicate revealed source to
be calls to ufs_flush ()

" ufs_flush () is called in fsck (1M) and
again before remount of root filesystem

" Fixing this is a huge win: 8 seconds on X1

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 77

dtrace(1M) syntax

dtrace
 -a - claim anonymous state
 -A - generate .conf file for anonymous tracing

demo 5

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 78

Lockstat Provider
" Lockstat provider implements hot patching

of synchronization primitives

" Provides “block ,” “spin ,” “acquire ”
and “release ” probes for
mutex_enter (), rw_enter (), etc.

" lockstat (1M) will be reimplemented as
a DTrace consumer

" Long-standing RFEs (e.g., lock statistics per
thread or per process) simply fall out

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 79

Profile Provider

" Provides unanchored probes based on
profile interrupt

" Probes implemented as high level cyclics
" Currently no way to specify arbitrary rate;

provider makes available ten probes with
different hard-coded rates

" Arbitrary rates may be available via private
consumer/provider interface

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 80

TL>0 Provider

" UltraSPARC-specific provider will be
implemented to allow probes when trap
level (TL) is greater than zero

" Non-trivial: dtrace_probe () cannot be
called from TL>0 context

" Provider will use dynamic trap table
interposition, as used in trapstat (1M),
ttrace and atrace

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 81

TL>0 Provider, cont.

" Implementation will be excruciating, but
payoff is substantial:
� Huge quantity of data available via trap table

interposition

� Will benefit enormously from DTrace’s ability to
prune and coalesce data

" Using technology first developed in
atrace , TL>0 provider will be able to
optionally provide address traces

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 82

" trapstat (1M) will be reimplemented as
a DTrace consumer

" TRAPTRACE will be obviated; equivalent
functionality will be dynamic

" Example questions answered:
� TLB misses per process, per page

� Window spill traps on a per-function basis

� All memory references in a specific function for a
specific process

TL>0 Provider, Cont.

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 83

Probes in C Source Code

" Permit users to define probes in C source as
TNF and VTRACE did, but improve syntax:

 TNF_PROBE_5(strategy, "io blockio", /* CSTYLED */,

 tnf_device, device, bp−>b_edev,

 tnf_diskaddr, block, bp−>b_lblkno,

 tnf_size, size, bp−>b_bcount,

 tnf_opaque, buf, bp,

 tnf_bioflags, flags, bp−>b_flags);

" Probe should look like a normal function call
" Enhance compiler to handle code generation

and argument type descriptions

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 84

Traditional Approaches

" D-cache hot but inflexible:

 if (tracing_on)

 trace(arg1, arg2, ...);

" D-cache cold but more flexible:

 if (this_probe_on)

 trace(arg1, arg2, ...);

" Both implementations bloat I-cache footprint

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 85

Compiler-Assisted Approach

maj = getmajor(bp−>b_edev);
...

ldx [%i0 + 0xa8], %g2 ! bp−>b_edev
mov −1, %g3
srl %g3, 0, %g3
srlx %g2, 0x20, %g2
and %g2, %g3, %g2 ! %g2 = getmajor(b_edev)
...
ret
restore %g0, 0, %o0 ! return (0);

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 86

Compiler-Assisted Approach
TRACE("myprobe", bp);
maj = getmajor(bp−>b_edev);
...

ldx [%i0 + 0xa8], %g2 ! treat as potential call
mov −1, %g3
srl %g3, 0, %g3
srlx %g2, 0x20, %g2
and %g2, %g3, %g2 ! %g2 = getmajor(b_edev)
...
ret
restore %g0, 0, %o0 ! return (0);
nop ! patch point for branch
mov %i0, %o0 ! assemble probe argument
.stabs "myprobe", id, location, arg−type, ...

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 87

Compiler-Assisted Approach
TRACE("myprobe", bp);
maj = getmajor(bp−>b_edev);
...

ba,a args1 ! branch to arg assembly
mov −1, %g3
srl %g3, 0, %g3
srlx %g2, 0x20, %g2
and %g2, %g3, %g2 ! %g2 = getmajor(b_edev)
...
ret
restore %g0, 0, %o0 ! return (0);
call trampoline ! jump to trampoline code
mov %i0, %o0 ! assemble argument
.stabs "myprobe", id, location, arg−type, ...

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 88

C Probe Applications

" Probes in C source code can be used to
convert all kernel ASSERT() instances into
probes that can be enabled in production

" Probes can also be placed in C source code
to facilitate fault injection testing

" Debug printf code that is not replaced by
FBT probes can be replaced with C probes

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 89

Basic Block Tracing

" Compiler -xa (tcov) and -xpg (gprof) options
generate instrumented code that can be
used for basic block coverage, profiles

" DTrace “BBT” provider can be implemented
to publish block sites as DTrace probes

" Kernel modules can be compiled using
these options for coverage testing

" RIP: uts/common/os/unix_bb.c

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 90

Fast-Trap Tracing

" DTrace will reserve fast-trap entry point(s)
for tracing user-level activities

" DTrace “FTT” provider can also provide
limited access to set of input arguments

" Traps can be generated using handcoded
assembly or libc assembly wrapper

" Traps can also be inserted by user-level
code generators (e.g. HotSpot JVM)

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 91

Interface Stability

" Problem: want to allow tools outside of
O/N to reliably layer on top of DTrace

" Extend probe description tuple to include
probe stability (i.e. attributes(5) data)

" Most of kernel is Unstable, but DDI
routines and types can be Evolving

" D compiler can provide a “lint” mode to
warn developers of unstable dependencies

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 92

Stable Abstractions

" We can also create more stable abstractions
at DTrace API layer, e.g. proc(4) structures

" Compiler could provide proc_t *psinfo

" Library performs necessary transformations:
psinfo−>pr_flag ⇒ curthread−>t_procp−>p_flag

psinfo−>pr_nlwp ⇒ curthread−>t_procp−>p_lwpcnt

psinfo−>pr_uid ⇒ curthread−>t_procp−>p_cred−>cr_uid

psinfo−>pr_sid ⇒ curthread−>t_procp−>p_sessp−>s_sid

...

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 93

Translators
" TNF users burdened with task of translating

between abstraction and implementation:
� ls -lL /dev/dsk/* to deal with dev_t mappings

� PIDs/LWP ids ⇔ proc_t/klwp_t addresses

� filenames ⇔ vnode_t addresses, inode numbers

" DTrace could support pluggable translators
in or out of kernel to handle mappings

" D compiler can attempt to map predicate to
available state by searching for translation

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 94

Trace Files

" DTrace will provide efficient access to saved
trace data and data formatting features

" DTrace library will provide stable API for
reading and writing trace files

" Lesson from crash dumps: put everything
needed to interpret data in the trace file

" Files from one system, OS revision should be
readable on another system or OS revision

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 95

File Format
header

indices

EPID dictionary

kernel meta-data

EPID data ...

File header and meta-data for each
trace record generated in advance

• ASCII and DIF predicate
• EPID record description
• data length
• data types

• module name, id
• symbol table
• string table
• CTF section

Probe data can be streamed out to file
using record id while tracing active

• Module cache of
 symbol and type data
 can be written once
 tracing is complete

EPID data ...

EPID data ...

EPID data ...

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 96

Conclusion

user/kernel/merged

probe coverage

disabled probe effect

scalability

safety

extensibility

data filtering

arbitrary recording

self describing

run-time analysis

stock availability

stable abstractions

Feature GTF vtrace TNF KInst DProbe

M M M K K

DTrace

M

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 97

For more information ...

" Copies of this presentation and other
documents available at http://dtrace.eng

" Questions to dtrace-interest@kiowa.eng
" E-mail dtrace-interest-admin@kiowa.eng

to join the interest list

" Meetings for near-term consumers

" Project documentation, schedules, and
other information forthcoming

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 98

Bibliography 1
" Hundt, Robert. “HP Caliper - An Architecture for Performance

Analysis Tools.” USENIX First Workshop on Industrial Experiences
with Systems Software, Oct., 2000.

" Moore, Richard J., “Dynamic Probes and Generalised Kernel
Hooks Interface.” Atlanta Linux Showcase, Oct., 2000. (see
http://oss.software.ibm.com/developerworks/opensource/linux/projects/dprobes/)

" Tamches, Ariel, and Barton P. Miller. “Fine-Grained Dynamic
Instrumentation of Commodity Operating System Kernels.” Third
Symposium on OSDI, Feb., 1999.

" Tamches, Ariel, and Barton P. Miller. “Using Dynamic Kernel
Instrumentation for Kernel and Application Tuning.” Int’l Journal
of High-Performance Applications, Fall, 1999.

" Weaver, David L., and Tom Germond, eds. The SPARC
Architecture Manual, Version 9, Prentice-Hall, Inc., 1994.

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 99

Bibliography 2
" Buck, Bryan, and Jeffrey K. Hollingsworth. “An API for Runtime

Code Patching.” Int’l Journal of High-Performance Applications,
Winter, 2000.

" Dai, Peng, and Thomas W. Doeppner, Jr. “VTRACE and
Communication Performance Analysis.” Computer Science
Technical Report CS-95-36, Brown University, Nov., 1995.

" Hollingsworth, Jeffrey K., Barton P. Miller, and Jon Cargille.
“Dynamic Program Instrumentation for Scalable Performance
Tools.” Proceedings of the Scalable High Performance
Computing Conference, May, 1994.

" Johnson, Mark W. “The ARM API, Version 2.” Tivoli Systems,
Austin, Texas. June 1996.

" Klivansky, Miroslav. “Collecting TNF I/O Traces.” Sun
Microsystems, Santa Clara, CA. May, 1999.

DTrace: Cantrill, Shapiro 3/11/02 Sun Proprietary/Confidential: Internal Use Only 100

Bibliography 3
" Larus, James R., and E. Schnarr, “EEL: Machine-Independent

Executable Editing.” PLDI, June, 1995.

" Srivastava, A., and Eustace, A., “ATOM: A System for Building
Customized Program Analysis Tools.” SIGPLAN Conference on
Programming Language Design and Implementation, May, 1994.

" IBM OS/390 V2R10.0 MVS Authorized Assembler Services
Reference, Volume 2 (ENFREQ-IXGWRITE) GC26-1765-13

" IBM OS/390 V2R10.0 MVS Diagnosis Procedures SY26-1082-03

" IBM OS/390 V2R10.0 MVS Diagnosis Reference SY26-1084-09

" IBM OS/390 V2R10.0 MVS IPCS Commands GC26-1754-09

